Editorial: Golgi Pathology in Neurodegenerative Diseases
نویسندگان
چکیده
The Golgi apparatus is a central organelle that lies at the heart of the secretory pathway sustaining the delivery of proteins from their site of synthesis in the endoplasmic reticulum to their final destination, the extracellular medium, the plasma membrane, and the endo-lysosomal system. It ensures post-translational protein modifications such as glycosylation and proteolytic cleavage and processing and acts as a sorting device including to neuronal axons and dendrites (Horton and Ehlers, 2003; Ye et al., 2007). The mammalian Golgi apparatus was first described by Camillo Golgi in 1998 as " apparato reticolare interno, " " a fine and elegant network within the cell body. .. completely internal in the nerve cells " (Golgi, 1898a,b). This large reticulum comprises stacks of flattened membrane bound compartments called cisternae which are laterally linked to form the so-called Golgi ribbon. Structural and functional alterations of the Golgi apparatus, which are here collectively termed Golgi pathology, are now recognized as a constant pathological hallmark of various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Parkinson, Alzheimer, Huntington, and prion diseases (Fan et al., 2008). In ALS, structural Golgi alterations have been revealed by the pioneering work of Gonatas and colleagues (Mourelatos et al., 1990; Gonatas et al., 1992; Fujita et al., 2002). They manifest as fragmentation—transformation of the Golgi ribbon into disconnected stacks, cisternae, tubules and vesicles, and as atrophy—loss of Golgi membrane material. These morphological changes are often accompanied by functional Golgi alterations, such as those affecting the anterograde and retrograde transport in the early secretory pathway, both in At least in ALS, Golgi pathology manifests as an early pre-clinical feature in degenerating neurons both in affected patients and in animal models (Mourelatos et al., 1996), suggesting that it may be relevant to the disease process instead of just representing an epiphenomenon. Yet, neither the molecular mechanisms underlying the changes in the functional organization of the Golgi apparatus nor their precise relevance to neurodegeneration have yet been completely elucidated. These important questions got a new boost by the discovery of mutations in genes encoding Golgi-related proteins as direct causes of neurodegeneration. For instance, mutations in Optineurin (Maruyama et al., 2010), VPS54/wobbler (Schmitt-John et al., 2005), and TBCE/pmn (Martin et al., 2002) have been identified in ALS and related motor neuron diseases. Furthermore, mutations in the Parkinson disease-associated proteins α-Synuclein (Cooper et al., 2006;
منابع مشابه
Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function
The Conserved Oligomeric Golgi (COG) complex is an evolutionarily conserved hetero-octameric protein complex that has been proposed to organize vesicle tethering at the Golgi apparatus. Defects in seven of the eight COG subunits are linked to Congenital Disorders of Glycosylation (CDG)-type II, a family of rare diseases involving misregulation of protein glycosylation, alterations in Golgi stru...
متن کاملMorphological Changes in Hippocampal Ca1 Area in Diabetic Rats: A Golgi-impregnation Study
Background and Objective: Although diabetes mellitus is known to be one of the risk factors for dementia but neuropathic changes in the brain of diabetic patients have not been completely revealed. Therefore, this research study was done to evaluate structural changes in pyramidal neurons of hippocampal ...
متن کاملCytoplasmic dynein and its regulatory proteins in Golgi pathology in nervous system disorders
The Golgi apparatus is a dynamic organelle involved in processing and sorting of lipids and proteins. In neurons, the Golgi apparatus is important for the development of axons and dendrites and maintenance of their highly complex polarized morphology. The motor protein complex cytoplasmic dynein has an important role in Golgi apparatus positioning and function. Together, with dynactin and other...
متن کاملImage-based drug screen identifies HDAC inhibitors as novel Golgi disruptors synergizing with JQ1
The Golgi apparatus is increasingly recognized as a major hub for cellular signaling and is involved in numerous pathologies, including neurodegenerative diseases and cancer. The study of Golgi stress-induced signaling pathways relies on the selectivity of the available tool compounds of which currently only a few are known. To discover novel Golgi-fragmenting agents, transcriptomic profiles of...
متن کاملTackling Primary Cilia Dysfunction in Photoreceptor Degenerative Diseases of the Eye.
Perception of what is occurring around us relies extensively on our senses, such as vision, smell and touch. Among these, vision attracts remarkable attention. The ability to see makes us appreciate life. For years, investigators have been seeking answers to remarkable capabilities of the eye to perceive and interpret light signal and any kind of disturbances causing loss of vision and degenera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in neuroscience
دوره 9 شماره
صفحات -
تاریخ انتشار 2015